Co-Engineered Together: OpenStack Platform and Red Hat Enterprise Linux

OpenStack is not a software application that just runs on top of any random Linux. OpenStack is tightly coupled to the operating system it runs on and choosing the right Linux  operating system, as well as an OpenStack platform, is critical to provide a trusted, stable, and fully supported OpenStack environment.

OpenStack is an Infrastructure-as-a-Service cloud management platform, a set of software tools, written mostly in Python, to manage hosts at large scale and deliver an agile, cloud-like infrastructure environment, where multiple virtual machine Instances, block volumes and other infrastructure resources can be created and destroyed rapidly on demand.

ab 1

Continue reading “Co-Engineered Together: OpenStack Platform and Red Hat Enterprise Linux”

Red Hat Enterprise Linux OpenStack Platform 6: SR-IOV Networking – Part I: Understanding the Basics

Red Hat Enterprise Linux OpenStack Platform 6: SR-IOV Networking – Part I: Understanding the Basics

Red Hat Enterprise Linux OpenStack Platform 6 introduces support for single root I/O virtualization (SR-IOV) networking. This is done through a new SR-IOV mechanism driver for the OpenStack Networking (Neutron) Modular Layer 2 (ML2) plugin, as well as necessary enhancements for PCI support in the Compute service (Nova).

In this blog post I would like to provide an overview of SR-IOV, and highlight why SR-IOV networking is an important addition to RHEL OpenStack Platform 6. We will also follow up with a second blog post going into the configuration details, describing the current implementation, and discussing some of the current known limitations and expected enhancements going forward.

Continue reading “Red Hat Enterprise Linux OpenStack Platform 6: SR-IOV Networking – Part I: Understanding the Basics”

A Closer Look at RHEL OpenStack Platform 6

Last week we announced the release of Red Hat Enterprise Linux OpenStack Platform 6, the latest version of our cloud solution providing a foundation for production-ready cloud. Built on Red Hat Enterprise Linux 7 this latest release is intended to provide a foundation for building OpenStack-powered clouds for advanced cloud users. Lets take a deeper dive into some of the new features on offer!

IPv6 Networking Support

IPv6 is a critical part of the promise of the cloud. If you want to connect everything to the network, you better plan for massive scale and have enough addresses to use. IPv6 is also increasingly important in the network functions virtualization (NFV) and telecommunication service provider space.

This release introduces support for IPv6 address assignment for tenant instances including those that are connected to provider networks; while IPv4 is more straight forward when it comes to IP address assignment, IPv6 offers some more flexibility and options to choose from. Both stateful and stateless DHCPv6 are supported, as well as the ability to use Stateless Address Autoconfiguration (SLAAC).

Continue reading “A Closer Look at RHEL OpenStack Platform 6”

Accelerating OpenStack adoption: Red Hat Enterprise Linux OpenStack Platform 6!

On Tuesday February 17th, we announced the general availability of Red Hat Enterprise Linux OpenStack Platform 6, Red Hat’s fourth release of the commercial OpenStack offering to the market.

Based on the community OpenStack “Juno” release and co-engineered with Red Hat Enterprise Linux 7, the enterprise-hardened Version 6 is aimed at accelerating the adoption of OpenSack among enterprise businesses, telecommunications companies, Internet service providers (ISPs), and public cloud hosting providers.

Since the first version released in July 2013, the “design principles” of Red Hat Enterprise Linux OpenStack Platform product offering are:

Continue reading “Accelerating OpenStack adoption: Red Hat Enterprise Linux OpenStack Platform 6!”

Red Hat Enterprise Virtualization 3.5 transforms modern data centers that are built on open standards

This week we announced the general availability of Red Hat Enterprise Virtualization 3.5. Red Hat Enterprise Virtualization 3.5 allows organizations to deploy an IT infrastructure that services traditional virtualization workloads while building a solid base for modern IT technologies.

Because of its open standards roots, Red Hat Enterprise Virtualization 3.5 enables IT organizations to more rapidly deliver and deploy transformative and flexible technology services in 3 ways:

  • Deep integration with Red Hat Enterprise Linux
  • Delivery of standardized services for mission critical workloads
  • Foundation for future looking, innovative, and highly flexible cloud enabled workloads built on OpenStack

Deep integration with Red Hat Enterprise Linux

Red Hat Enterprise Virtualization 3.5 is co-engineered with Red Hat Enterprise Linux including the latest version, Red Hat Enterprise Linux 7, which is built to meet modern data center and next-generation IT requirements. Due to this tight integration, Red Hat Enterprise Virtualization 3.5 inherits the innovation capabilities of the world’s leading enterprise Linux platform.

Continue reading “Red Hat Enterprise Virtualization 3.5 transforms modern data centers that are built on open standards”

IBM and Red Hat Join Forces to Power Enterprise Virtualization

Adam Jollans is the Program Director  for Cross-IBM Linux and Open Virtualization Strategy
IBM Systems & Technology Group

IBM and Red Hat have been teaming up for years. Today, Red Hat and IBM are announcing a new collaboration to bring Red Hat Enterprise Virtualization to IBM’s next-generation Power Systems through Red Hat Enterprise Virtualization for Power.

A little more than a year ago, IBM announced a commitment to invest $1 billion in new Linux and open source technologies for Power Systems. IBM has delivered on that commitment with the next-generation Power Systems servers incorporating the POWER8 processor which is available for license and open for development through the OpenPOWER Foundation. Designed for Big Data, the new Power Systems can move data around very efficiently and cost-effectively. POWER8’s symmetric multi-threading provides up to 8 threads per core, enabling workloads to exploit the hardware for the highest level of performance.

Red Hat Enterprise Virtualization combines hypervisor technology with a centralized management platform for enterprise virtualization. Red Hat Enterprise Virtualization Hypervisor, built on the KVM hypervisor, inherits the performance, scalability, and ecosystem of the Red Hat Enterprise Linux kernel for virtualization. As a result, your virtual machines are powered by the same high-performance kernel that supports your most challenging Linux workloads.

Continue reading “IBM and Red Hat Join Forces to Power Enterprise Virtualization”

Co-Existence of Containers and Virtualization Technologies

By, Federico Simoncelli, Principal Software Engineer, Red Hat

As a software engineer working on the Red Hat Enterprise Virtualization (RHEV), my team and I are driven by innovation; we are always looking for cutting edge technologies to integrate into our product.

Lately there has been a growing interest in Linux containers solutions such as Docker. Docker provides an open and standardized platform for developers and sysadmins to build, ship, and run distributed applications. The application images can be safely held in your organization registry or they can be shared publicly in the docker hub portal (http://registry.hub.docker.com) for everyone to use and to contribute to.

Linux containers are a well-known technology that runs isolated Linux systems on the same host sharing the same kernel and resources as cpu time and memory. Containers are more lightweight, perform better and allow more density of instances compared to full virtualization where virtual machines run dedicated full kernels and operating systems on top of virtualized hardware. On the other hand virtual machines are still the preferred solution when it comes to running highly isolated workloads or different operating systems than the host.

Continue reading “Co-Existence of Containers and Virtualization Technologies”

Empowering OpenStack Cloud Storage: OpenStack Juno Release Storage Overview

Wind Energy
 License: CC0 Public Domain

The OpenStack 10th release added ten new storage backends and improved testing on third-party storage systems. The Cinder block storage project continues to mature each cycle exposing more and more Enterprise cloud storage infrastructure functionalities.

Here is a quick overview of some of these key features.

Simplifying OpenStack Disaster Recovery with Volume Replication

After introducing a new Cinder Backup API to allow export and import backup service metadata in the Icehouse release, which allowed “electronic tape shipping” style backup-export & backup-import capabilities to recover OpenStack cloud deployments, the next step for Disaster Recovery enablement in OpenStack is the foundation of volume replication support at block level.

Continue reading “Empowering OpenStack Cloud Storage: OpenStack Juno Release Storage Overview”

Simplifying and Accelerating the Deployment of OpenStack Network Infrastructure

plumgrid logo

RHOSCIPN_logo_small

The energy from the latest OpenStack Summit in Paris is still in the air. Its record attendance and vibrant interactions are a testimony of the maturity and adoption of OpenStack across continents, verticals and use cases.

It’s especially exciting to see its applications growing outside of core datacenter use cases with Network Function Virtualization being top of mind for many customers present at the Summit.

If we look back at the last few years, a fundamental role fueling OpenStack adoption has been played by the distributions which have taken the project OpenStack and helped turn it into an easy to consume, supported, enterprise-grade product.

At PLUMgrid we have witnessed this transformation summit after summit, customer deployment after customer deployment. Working closely with our customers and our OpenStack partners we can attest how much easier, smoother, simpler an OpenStack deployment is today.

Similarly, PLUMgrid wants to simplify and accelerate the deployment of OpenStack network infrastructure, especially for those customers that are going into production today and building large-scale environments.

If you had the pleasure to be at the summit you have learnt about all the new features that were introduced in Juno for the OpenStack networking component (and if not check out this blog which provides a good summary of all Juno’s networking feature).

Continue reading “Simplifying and Accelerating the Deployment of OpenStack Network Infrastructure”

Delivering Public Cloud Functionality in OpenStack

Talligent-logo

RHOSCIPN_logo_small

When it comes to delivering cloud services, enterprise architects have a common request to create a public cloud-type rate plan for showback, chargeback, or billing. Public cloud packaging is fairly standardized across the big vendors as innovations are quickly copied by others and basic virtual machines are assessed mainly on price. (I touched on the concept of the ongoing price changes and commoditization of public clouds in an earlier post.) Because of this standardization and relative pervasiveness, public cloud rate plans are well understood by cloud consumers. This makes them a good model for introducing enterprise users to new cloud services built on OpenStack.Enterprise architects are also highly interested in on-demand, self-service functionality from their Openstack clouds in order to imitate the immediate response of public clouds. We will cover how to deliver on-demand cloud services in a future post.

Pricing and Packaging Cloud Services
Public cloud rate plans are very popular, seeing adoption within enterprises, private hosted clouds, and newer public cloud providers alike. Most public cloud providers use the typical public cloud rate plan as a foundation for layering on services, software, security, and intangibles like reputation to build up differentiated offerings.Enterprise cloud architects use similar rate plans to demonstrate to internal customers that they can provide on-demand, self-service cloud services at a competitive price. To manage internal expectations and encourage good behavior, enterprises usually introduce cloud pricing via a showback model which does not directly impact budgets or require exchange of money. Users learn cloud cost structures and the impact of their resource usage. Later, full chargeback can be applied where internal users are expected to pay for services provided.

Continue reading “Delivering Public Cloud Functionality in OpenStack”